
 

 

Advanced signal processing based on support vector regression for 
LIDAR applications 

  
M. Gelfusa1, A. Murari2, A. Malizia1, M. Lungaroni1, E. Peluso1, S. Parracino1, S.Talebzadeh1, J. 

Vega3 and P. Gaudio1 

 

1Department of Industrial Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1 
(00133) Roma, Italy 

 
2 Consorzio RFX (CNR, ENEA, INFN, Universita' di Padova, Acciaierie Venete SpA), Corso Stati 

Uniti 4, 35127 Padova, Italy 
3Laboratorio Nacional de Fusión. CIEMAT. Avda. Complutense, 40. 28040 Madrid, Spain 

ABSTRACT  

The LIDAR technique has recently found many applications in atmospheric physics and remote sensing. One of the main 
issues, in the deployment of systems based on LIDAR, is the filtering of the backscattered signal to alleviate the 
problems generated by noise. Improvement in the signal to noise ratio is typically achieved by averaging a quite large 
number (of the order of hundreds) of successive laser pulses. This approach can be effective but presents significant 
limitations. First of all, it implies a great stress on the laser source, particularly in the case of systems for automatic 
monitoring of large areas for long periods.  Secondly, this solution can become difficult to implement in applications 
characterised by rapid variations of the atmosphere, for example in the case of pollutant emissions, or by abrupt changes 
in the noise. In this contribution, a new method for the software filtering and denoising of LIDAR signals is presented. 
The technique is based on support vector regression. The proposed new method is insensitive to the statistics of the noise 
and is therefore fully general and quite robust. The developed numerical tool has been systematically compared with the 
most powerful techniques available, using both synthetic and experimental data. Its performances have been tested for 
various statistical distributions of the noise and also for other disturbances of the acquired signal such as outliers. The 
competitive advantages of the proposed method are fully documented. The potential of the proposed approach to widen 
the capability of the LIDAR technique, particularly in the detection of widespread smoke, is discussed in detail.  
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1. INTRODUCTION: LIDAR MEASUREMENTS OF PARTICULATE  
Lidar measurements have become well established laser based techniques for remote sensing of the atmosphere [1]. They 
are used to probe almost any altitude in the most different conditions, from forests to urban areas. One of the most 
interesting applications consists of environment surveying of particulate [2-10]. Indeed, with the development of reliable 
lasers, emitting in the appropriate range of wavelengths, Lidar systems are suitable and competitive techniques [11, 12]. 
A typical example of the use of Lidar is the detection of forest fires [3, 4, 6, 11]. Indeed wild fires have become a very 
serious problem in various parts of the world. The LIDAR technique has been successfully applied to the detection of the 
smoke plume emitted by wild fires, allowing the reliable survey of large areas. The main operational approach envisages 
the continuous monitoring of the area to be surveyed with a suitable laser. When a significant peak in the backscattered 
signal is detected, an alarm is triggered. The traditional applications of Lidar systems to atmospheric physics therefore 
rely on the capability of properly detecting the backscattered peaks of radiation. More recently, the LIDAR technique has 
been shown to have the potential to provide useful measurements also of widespread smoke, which can be the 
consequence of strong wind dispersion or non-concentrated sources [13]. Typical examples of backscattered signals for 
the alternatives of clear atmosphere, strong smoke plume and widespread smoke are shown in Figure 1. 
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Figure 1. Examples of LIDAR back scattered signals: a) Clear atmosphere (blue line) b) strong smoke plume (green line) c) 
widespread smoke (red line). 

 

As can be seen from the experimental signals shown in Figure 1, strong localized emissions of particulates produce short 
peaks in the LIDAR backscattering. Larger, less concentrated and more wide spread sources of particulate result in an 
increase of the entire curve. This can be ascribed to an increase in the backscattering coefficient over practically the 
entire range of the LIDAR system 
In all these applications a lot of the data analysis is preformed manually, which is acceptable for pioneering tests and 
even experimental campaigns of the order of days. Such an approach is of course not no viable for systematic 
applications. In this perspective, new and automatic analysis techniques can help substantially, when results of very large 
surveys have to be analyzed or when real time alarms have to be reliably guaranteed. An original tool, the Universal 
Multi-Event Locator (UMEL) [14, 15], has already been applied successfully to the problem of automatically identifying 
the time location of peaks in the backscattered LIDAR signals. The method developed is based on Support Vector 
Regression (SVR) and presents various advantages with respect to more traditional techniques. In this paper, Support 
Vector Regression is used to improve both smoothing and modeling of the backscattered signals. The added value of 
SVR consists of an increased robustness against noise, which can have significant practical consequences. SVR can be 
used as a way to clean the backscattered signals in order to allow more reliable fitting. This method can also help in 
increasing the time resolution of the measurements and in widening the applicability of the technique.  
 
With regard to the structure of the paper, in the next Section 2 the mathematical background on Support Vector 
Regression is provided. Section 3 reports a series of numerical tests aimed at showing the potential of the proposed 
method of signal processing based on SVR. An overview of the Lidar system used to perform the experimental 
measurements analyzed in the rest of the paper is given in Section 4. The application of the new signal processing 
methods to the experimental measurements are the subject of Section 5. In Section 6 some lines of possible future 
investigations are provided.   

 

2. SUPPORT VECTOR REGRESSION FOR THE FIRST SIGNAL PROCESSING  
Support Vector Machines are a very specific class of machine learning tools, whose characteristics are use of kernels, 
absence of local minima, sparseness of the solution and generalization control obtained by acting on the margins. They 
were invented by Vladimir Vapnik and his co-workers, and first introduced at the Computational Learning Theory 
(COLT) 1992 conference. In 1995 also the soft margin version of SVM was introduced. Originally conceived for 
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classification, SVM can be applied also to regression. Still they present all the main features that characterize maximum 
margin algorithms: a non-linear function is learned by mapping the inputs into a high dimensional feature space induced 
by a suitable kernel. In analogy with classification, there are significant advantages in optimizing the generalization of 
the regression margins. This is achieved by defining an indicator, called loss function, which ignores errors, whose 
amplitude is situated within a certain distance of the true value. This type of function is often called – epsilon insensitive 
– loss function. Figure 2 shows an example of one-dimensional linear regression function with an epsilon insensitive 
band. 

 
Figure 2. Example of an epsilon insensitive loss function 

 

The loss function quantifies the cost of the errors at the training points. The errors are considered zero for all points that 
are inside the insensitive band.  

In SVM regression, the input x is first mapped onto a m-dimensional feature space, using some fixed (nonlinear) 
mapping, and then a linear model is constructed in this feature space. Using mathematical notation, the linear model (in 
the feature space) f(x, ω) is given by: 
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where gj(x), j=1,…,m denotes a set of nonlinear transformations, and b is the “bias” term. As mentioned, the quality 
of the estimation is measured by the loss function L(y, f(x,ω)). SVM regression uses a new type of loss function, called ε-
insensitive loss function, introduced by Vapnik: 
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The so-called empirical risk can be calculated as: 
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SVM regression performs linear regression in the high-dimension feature space usingε -insensitive loss and, at the 

same time, tries to reduce model complexity by minimizing 2ω . This can be described by introducing (non-negative) 

slack variables niii ,...1, * =ξξ , to measure the deviation of training samples outside theε -insensitive zone. Thus, SVM 
regression is formulated as minimization of the following functional: 
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White noise within a range of ± 10 % of the maximum has then been added to the signals (top plot of Figure 3). The 
central plot of Figure 3 shows the improvement in the S/N ratio obtained by adding 10 pulses, whereas the bottom plot is 
a signal obtained by filtering a single backscattered pulse with SVR.  

 
Figure 3 Top: one realization of the lognormal signal including additive noise (Gaussian distribution with σ equal to 10% 
of the peak value of the signal). Centre: signal obtained summing 10 independent realizations of the signal. Bottom:  an 
individual realization filtered with SVR (the red dashed lines indicate the ε-tube). 
 
 
In any case, to test more generally the performance of SVR, a comparison with the most consolidated smoothing 
methods has been performed. In practice the most used filtering techniques are the ones belonging to the following 
families [17]:  

• Moving average  
• Lowess  
• Loess 
• Rlowess: robust version of Lowess  
• Rloess: robust version of Lowess  
• Savitzky-Golay 

The moving average is obtained by calculating a series of averages of different subsets of the full data set. Given 
a time series and a fixed subset size, the first element of the moving average is calculated by taking the average of the 
initial fixed subset of points of the series. Then the subset is changed by a process of "shifting forward"; that is, 
excluding the first number of the series and including the next number. This operation generates a new subset of 
numbers, which is averaged. This process is repeated over the entire series.   
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The acronyms "Lowess" and "Loess" are derived from the term "Locally weighted scatter plot smoothing" as both 
methods are based on locally weighted linear regression to smooth the data. The linear regression is performed over a 
limited number of points called the span. The smoothing process is therefore local because each smoothed value is 
determined only by neighbouring data points, the ones within the span. The process is weighted because a regression 
weight function is used to fit the data points contained within the span. The data point to be smoothed has the largest 
weight and the most influence on the fit. The more distant the points from the one to be fitted, the lower their weight and 
points outside the span are given zero weight and do not influence the fit. The two approaches are similar but differ in 
the model used for the regression: Lowess implements a linear polynomial, while Loess implements a quadratic 
polynomial. 
 
Rlowess and Rloess are robust versions of Lowess and Loess, to reduce the sensitivity to outliers. Robustness is achieved 
by an appropriate choice of the weight function.  These robust methods include an additional calculation of robust 
weights, based on MAD, which is resistant to outliers. 

The Savitzky-Golay filter can be considered a generalisation of the Loess approach allowing to choose higher order 
polynomials for the fit. In the applications presented in this paper, the degree of the polynomial is always 6 or higher. 
 
To assess the comparative performance of SVR, a wide range of functions have been tested, ranging from power laws to 
exponential, trigonometric and squashing functions. For brevity of explanation, in the following the attention will be 
focused on two quite difficult types of functions:  
 ଵ݂ = sin൫√ݐ൯ + cos(ݐ)          (9) 
 ଶ݂ = sin(3ݐ) + cos(ݐଶ) ∙ exp	 ቀ− ௧଺ቁ                (10) 

 
Figure 4 Left: realization of function f1 including noise Right: realization of function f2 including noise. Top rows: 
random noise. Central rows: Gaussian Noise. Bottom rows: noise with a Laplacian distribution. 
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To the synthetic data generated for these functions a variety of noise types, noise amplitudes and outliers have been 
added. The main systematic tests performed have involved the following types of uncertainties:  

• Random noise in the range from −0.5	݉ܽݔ(|ݕௗ௔௧௔|) to +0.5	݉ܽݔ(|ݕௗ௔௧௔|) 
• Gaussian Noise with Standard deviation of 0.5	݉ܽݔ(|ݕௗ௔௧௔|) 
• Noise with a Laplacian pdf with parameter b equal to 0.5	݉ܽݔ(|ݕௗ௔௧௔|) 
• Outliers: to simulate outliers, 10% of the points have been derived by a second Gaussian distribution with 

standard deviation equal to 0.2	݉ܽݔ(|ݕௗ௔௧௔|)  
In Figure 4, these two functions are plotted, showing their trends and the level of added noise.  

In general, the SVR tends to perform not worse and very often better than all the other methods. Particularly relevant is 
the robustness against outliers. This can be appreciated from the plots of Figure 5, in which the RMSE (Root Main 
Square Error) of equations (9) and (10) are reported for the case of outliers generated as described above. The RMSE is 
calculated on the basis of the differences between the curves, smoothed with the various methods, and the exact, 
analytical functions used to generated the data. Three different databases, representing cases of different amounts of data 
available, have been considered: datasets of 500 points, 1000 points and 2000 points. 

 

 
Figure 5 Robustness against outliers quantified as RMSE with respect to the exact formula. Top: results for equation (9) 
and datasets of 500, 1000 and 2000 entries. Bottom: results for equation (10) and datasets of 500, 1000 and 2000 entries. 
SVR provides always the best results, i.e. the lowest RMSE.  
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4. THE LIDAR SYSTEM 
The measurements described in the paper have been performed with the mobile Lidar unit designed and developed at 
Industrial Engineering Department, University of Rome "Tor Vergata” [8, 14]. The system consists of an easily 
transportable compact Lidar system. The transmitter is a Nd:YAG laser that can operate at three wavelengths: 1064, 532 
and 355nm. Of these wavelengths, the 532 nm is not in the eye safe region of the spectrum. The other two, on  the 
contrary, are currently used for monitoring the atmosphere and for surveying even populated areas. The laser is anchored 
at the receiver system, a Newtonian telescope, and both can move to cover a whole hemisphere. The system is 
completely auto-powered and the structure is designed to be transportable and steerable. It is easily hooked to azimuth 
mount for supporting and rotating about two mutually perpendicular axes; one vertical, from -10° to 90°, and one 
horizontal, from 0° to 220°. Two step-motors provide a global angular resolution of 1.8°. Since the  laser source is 
operating in the UV region, the detector chosen is a Hamamatsu’s photomultiplier tube (PMT), R3235 model. These 
technologies have become relatively standard and therefore they can be procured at reasonable costs [18]. The main 
characteristics of the mobile unit are reported in Table 1. The entire apparatus is controlled by a software package, 
written in Labview and Matlab, explicitly developed for this application. The laser activation and the wavelength 
selection, together with the rotation of the telescope and data acquisition, is controlled by a Labview series of routines. 
The signal processing algorithms and the visualization of the results have been implemented using Matlab.  

The signals analysed in this paper have been collected during an extensive experimental campaign, which has been 
carried out in Calabria, in the south of Italy. 

 

Table 1. Parameters of Nd:Yag Lidar system [13]. 

Transmitter:  
Laser  Q-switch Nd:Yag 
Energy pulse at 1064 nm 360 mJ 
Pulse time width 5 ns 
Divergence angle 0,5 mrad 
Pulse Frequency 10 Hz 
Receiver:  
Telescope type Newtonian 
Nominal focal length 1030 mm 
Primary mirror diameter 210 mm 
Detector Photomultiplier (PMT) 
Photocathode sensibility 72 mA/W 
Response time 30 ns 

 
 

 

5. ANALYSIS OF EXPERIMENTAL DATA 
The potential of SVR for smoothing and filtering of signals has been shown quite clearly with the numerical tests and 
studies describe in Section 2. Another competitive advantage of Support Vector Regression consists of the fact that its 
parameters can be chosen without detailed knowledge of the noise superimposed on the signal. Only the amplitude of the 
noise really matters, because typically it affects the choice of the e-tube. Moreover this filtering technique is quite robust 
to variations in the details of the noise as has already been demonstrated in other applications of LIDAR detection. [10, 
12, 13]. In the case of detection of widespread smoke, the most innovative application described in the paper, the quality 
of the signals after filtering can be appreciated in Figure 6. At this point, it is relatively easy to perform a fitting of the 
signals and, when the maximum of the signal is above a certain threshold, a warning of widespread smoke can be issued.  
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Lidar signals after UMEL

 

 

 
Figure 6. The experimental signals of Figure 1 after filtering with SVR. The case without smoke is in red. The signal for the 
case with widespread smoke is in blue. 

 

Starting from the typical Lidar equation [8], it has been decided to fit the decaying part of the backscattered signal 
intensity with a mathematical expression of the form: 
 

( )RK
R
K

P 22
1 2exp −=   (11) 

 
where K1 and K2 are constants and R is the range. The data of Figure 3 have been fitted with this formula. The results of 
the nonlinear fit are:  
  

- In case of widespread smoke: ܲ = 2.648 ∙ 10−1ܴ2 ∙ exp(−1.259 ∙ 10−3 ∙ ܴ) 
(12) 

- In the case of no smoke: 
 ܲ = 1.734 ∙ 10−1ܴ2 ∙ exp(−1.171 ∙ 10−3 ∙ ܴ) 

(13) 
 
The results of the fit, equations (12) and (13), indicate quite clearly that the parameter K2 is practically the same 

for both the case of widespread smoke and clear atmosphere. On the other hand, there is a significant difference, of the 
order of 25%, in the constants K1. This is expected since K1 includes the effect of the coefficient β, which indeed 
quantifies the backscattering properties of the atmosphere [5]. 

The results detailed in the previous fits have been confirmed by a first statistical analysis of a set of laser pulses. 
The results are shown in the plot of Figure 7, in which the K1 values of 50 signals with widespread smoke and 50 signals 
from clear atmosphere are reported. By simple inspection, it can be seen how a simple threshold in the coefficient K1 can 
discriminate between the cases of widespread smoke and not smoke. Indeed in the case of the signals analyzed to 
produce Figure 7, with this simple approach a success rate of almost 95% can be achieved.  
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Figure 7. Values of K1 for 50 pulses in clear atmosphere and 50 pulses with widespread smoke. Blue points: measurements 
obtained in clear atmosphere. Red points: measurements obtained in presence of wide spread smoke. The vertical band 
manages to separate the two cases with almost 95% of success rate. K2 is reported on the vertical axis K1 on the horizontal.  

 

 

6 CONCLUSIONS AND FUTURE DEVELOPMENTS 

As shown in the previous section, SVR is a sophisticated technique to filter the backscattered signals of LIDAR systems. 
If this filtering step is successful, it is relatively easy to fit the signals and calculate the parameters K1 and K2. Based on 
these values, a decision can be made about the presence of widespread smoke. The effectiveness of the approach will 
therefore depend on the accuracy and reliability of the first filtering step. The first results are encouraging but a wider 
statistical study is necessary. In this perspective, more examples of widespread smoke will have to be collected. It is 
expected that for more complicated cases both parameters K1 and K2 will have to be used to discriminate between 
propagation in clear atmosphere and widespread smoke. Classifiers based on SVM are being developed explicitly for this 
purpose. Also, in practical applications, the power output of the laser will have to be monitored to make sure that the 
changes in the amplitude of the received signals are really due to variations in the atmosphere and not drifts in the 
system. 
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